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Summary of Needs

More Realistic Nonlinear Dynamic Analysis
Improved Guidelines and Criteria for Assessment

Benchmarking and Calibration of Acceptance Criteria

= W DR

Assessment and Mitigation of Liquefaction and Large
Ground Deformations

S

Improved Models for Soil-Structure Interaction

6. Broader Issues: Risk Mitigation Decision Making
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Modern (2003) versus Older (1967) Designs
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* Space Frame

e 1967 UBC, Zone 4

* Design V/W:0.068¢g
e Member sizes

— Col. 20x20 to 24x24
— Beam depth 20 to 26

e No SCWSB, no joint check,
non-conforming ties

Ref: Haselton, Liel and Deierlein
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* Perimeter Frame
e 2003 UBC/2002 ACI
* Design V/W:0.094 ¢
e Member sizes
- Col. 24x28 to 30x40
- Beam depth 32 to 42
o

Fully conforming design




Modern versus Older Design: Collapse Risk and Losses

Comparison of Loss Contributors
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Overview of Collapse Assessment

PEER/PBEE: Collapse (SAFETY) Assessment
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DM: Loss of Vertical Carrying
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EDP: Interstory Drift Ratio —

!

IM: Sa(7,) + Ground Motions



Collapse Assessment Using Incremental Dynamic Analysis
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27% of collapses

40% of collapses
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**predicted by Static Pushover
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Collapse Fragility Curve
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Collapse Fragility and Hazard Curve Integration
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Nonlinear RC component model

inelastic hinge Key Parameters:
----- "—_:‘@ - strength
e initial stiffness
e post-yield stiffness
 plastic rotation (capping) capacity
e post-capping slope
 cyclic deterioration rate

Calibration Process:
e 250+ columns (PEER database)
e flexure & flexure-shear dominant
» calibrated to expected values

Demand Parameter Output: hinge rotation

to KEY ASSUMPTION: bond slip is incorporated
z ! T~ in the beam-column model parameters
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RC model parameter — plastic rotation
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Modeling Uncertainties

Uncertainty in model parameters
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Influence of Modeling Uncertainties on Collapse Fragility

Effects of modeling uncertainties on collapse fragility
(4-story RC frame example)
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Modern (2003) versus Older (1967) Designs

Modern vs. Older RC Buildings:
Component and Pushover Ductlllty
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Modern versus Older Design: IDA

Comparison of Dynamic (IDA) Response
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Nonlinear Modeling Assumptions and Criteria
Non-Simulated Collapse Mechanisms

Non-simulated component deterioration is not

F Non-simulated component
geterioration captured by backbone curve of hysteretic
= § 4—Backbone curve used model and invalidates analysis results beyond
y for nonlinear analysis

this point

Ansc

St A

— Collapse point from nonlinear time history
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Ref: Liel and Deierlein



Modern versus Older Design: Collapse Risk and Losses

Comparison of Loss Contributors
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Cost-Benefit Analysis: Retrofit of Older RC Buildings

Seismic Retrofit Strategies
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Cost-Benefit Analysis: Retrofit of Older RC Buildings

Seismic Retrofit — Collapse Fragility
3-Story Space Frame
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Cost-Benefit Analysis: Retrofit of Older RC Buildings

Seismic Retrofit — Cost/Benefit Analysis
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1) More Realistic Nonlinear Dynamic Analysis

« Challenges for dynamic response of existing buildings
- cyclic models with strength & stiffness degradation

- multitude of deterioration & failure models
- modeling uncertainties

 Validation and calibration of nonlinear models
- Integrate test data, analysis & judgment

- develop & utilize system response data
- effects of loading rate and load protocol

 Development of more realistic models
- phenomenological vs. fundamental

- minimize reliance on “non-simulated” collapse criteria

NISI'/
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1) More Realistic Nonlinear Dynamic Analysis

Non-ductile RC Systems
- beam-columns (3D P-M-V)

- shear walls (flexural and squat)
- Infill walls, splices, joints, slab-column

Non-conforming steel systems
- beam-columns w/T-F buckling, local buckling

- brace and moment frame connections (yielding-fracture)
- braces w/buckling and fracture

Masonry walls incl. diaphragm/collector interactions

Wood walls and diaphragms, w/ architectural finishes
and partitions

@p ACEHR - Engineering Needs for Existing Buildings — Nov. 19, 2012




2) Improved Assessment Guidelines and Criteria

 next generation of FEMA 273/ASCE 41
overcome limitations to be more realistic

 nonlinear DYNAMIC analysis
- generalized cyclic model
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2) Improved Assessment Guidelines and Criteria
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Force-Deformation - Initial (monotonic) backbone

- strength/stiffness degradation
- hysteresis rules
- energy dissipation capacity

(cyclic backbone)
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2) Improved Assessment Guidelines and Criteria

« modeling uncertainties

- central values (mean or median) & dispersion

« more realistic continuum vs. fixed categories
- e.g., deformation vs. force-controlled elements

o facilitate use of alternative model types
- phenomenological (hinge) vs. fundamental (strain)

ler ACEHR - Engineering Needs for Existing Buildings — Nov. 19, 2012
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3) Benchmarking/Calibration of Performance Criteria

e ASCE 41 Performance Metrics

- component-base acceptance criteria
- guantitative meaning of 10, LS and CP?

e Evaluation Technologies
- Collapse: FEMA P695
- Losses: FEMA P85

o Assess performance of simplified prescriptive
performance limits with the aim to:
- refine/calibrate prescriptive criteria
- Inform practices and policies for evaluation and retrofit

ler ACEHR - Engineering Needs for Existing Buildings — Nov. 19, 2012
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4) Assessment and Mitigation of Liquefaction and
Large Ground Deformations

o Criteria for triggering & prediction of liguefaction
and ground deformations under buildings

- overburden pressures & SSI effects

« Consequence and mitigation of ground
deformations on buildings

 Evaluation of non-ductile RC piles in solil layers
with variable properties that can lead to
localization of deformations

NISII-q ACEHR - Engineering Needs for Existing Buildings — Nov. 19, 2012
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5) Improved Models for Soil-Structure Interaction
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5) Improved Models for Soil-Structure Interaction

 Foundation rocking and sliding
- reduce earthquake effects on low-rise (stiff) buildings

- variable effects on mid- to high-rise buildings

* Incoherence of ground motions in plan and depth

(kinematic interaction)
- characterization of ground motions

- analytical techniques for software implementation

 More realistic assessment of dynamic earth

pressures on retaining walls
- assumed mobilization of shear strength is unrealistic

ACEHR - Engineering Needs for Existing Buildings — Nov. 19, 2012

NIST _
~ |u@ P




6) Broader Issues: Risk Mitigation Decision Making

e Post-EQ Occupancy Issues
- exogenous factors (lifeline & community performance)

- resilience metrics and planning

e Seismic Building Rating System
- What metrics? How to calculate them?

o Strategies for Building Instrumentation
- pre-analysis and instrument system design

- effectiveness and best-practices guide

 Cost-Benefit Methodology to Assess Retrofit
- benefits: life safety, functionality and losses

- Inform decision making by owners and communities,
Including incentives and allocation of costs

ler ACEHR - Engineering Needs for Existing Buildings — Nov. 19, 2012
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Summary of Needs

More Realistic Nonlinear Dynamic Analysis
Improved Guidelines and Criteria for Assessment

Benchmarking and Calibration of Acceptance Criteria
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Ground Deformations
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6. Broader Issues: Risk Mitigation Decision Making
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